
Chapter 10

TRANSVERSE COUPLED BUNCH

INSTABILITIES

10.1 RESISTIVE WALL

If there are M identical equally spaced bunches in the ring, there are µ = 0, · · · , M−1

transverse coupled modes when the center-of-mass of one bunch leads its predecessor by

the betatron phase of 2πµ/M . The transverse growth rate for the µ-th coupled-bunch

mode is exactly the same as the formula in Eq. (9.46) except for the replacement of ωp
by ωq = (qM+µ)ω0 + ωβ +mωs; i.e.,

1

τmµ
= − 1

1+m

eMIbc

4πνβE0

∑
qReZ⊥1 (ωq)hm(ωq−χ/τL)
B
∑

q hm(ωq−χ/τL)
, (10.1)

where the bunching factor B = MτL/T0 has been used, χ = ωξτL is the chromaticity

phase shift across the bunch of full length τL and T0 is the revolution period.

A most serious transverse coupled-bunch instability that occurs in nearly all stor-

age rings is the one driven by the resistive wall [1]. Since ReZ⊥1 ∝ ω−1/2 and is posi-

tive (negative) when ω is positive (negative), a small negative frequency betatron line,

which acts like a narrow resonance, can cause coupled-bunch instability. Take, for ex-

ample, the Tevatron in the fixed target mode, where there are M = 1113 equally spaced

bunches. The betatron tune is νβ = 19.6. The lowest negative betatron frequency line

is at (qM+µ)ω0 + ωβ = −0.4ω0, for mode µ = 1093 and q = −1. The closest damped
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Figure 10.1: The −0.4ω0 betatron line in the Tevatron dominates over all other
betatron lines for µ = 1093 mode coupled-bunch instability driven by the resistive
wall impedance.

betatron line (q = 0) is at (1113−0.4)ω0, but ReZ⊥1 is only −
√

0.4/1112.6 the value at

−0.4ω0. The next anti-damped betatron line (q = −2) is at −1113.4ω0, with ReZ⊥1 equal

to
√

0.4/1113.4 the value at −0.4ω0. This is illustrated in Fig. 10.1. Thus it is only the

−0.4ω0 betatron line that dominates. From Eq. (10.1), the growth rate for this mode can

therefore be simplified to

1

τmµ
≈ − 1

1+m

eMIbc

4πνβE0

ReZ⊥1 (ωq)F
′
m(ωqτL − χ) , (10.2)

where χ = ωξτL and the form factor is

F ′m(ωτL) =
2πhm(ω)

τL

∫ ∞
−∞

hm(ω)dω

, (10.3)

and is plotted in Fig. 10.2. For zero chromaticity, only the m = 0 mode can be unstable

because the power spectra for all the m 6= 0 modes are nearly zero near zero frequency.

Since the perturbing betatron line is at extremely low frequency, we can evaluate the

form factor at zero frequency. For the sinusoidal modes, we get F ′(0) = 8/π2 = 0.811.

One method to make this mode less unstable or even stable is by introducing positive

chromaticity when the machine is above transition. For the Tevatron, η = 0.0028, total

bunch length τL = 5 ns, revolution frequency f0 = 47.7 kHz, a chromaticity of ξ = +10
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Figure 10.2: Plot of form factor F ′m(ωτL−χ) for modes m = 0 to 5. With the
normalization in Eq. (9.44), these are exactly the power spectra hm.

will shift the spectra by the amount ωξτL = 2πf0ξτL/η = 5.4. The form factor and thus

the growth rate is reduced by more than 4 times. However, from Figs. 6.4 and 9.3, we

see that the spectra are shifted by ωξτL/π = 1.7 and the m = 1 mode becomes unstable.

Another method for damping is to introduce a betatron angular frequency spread using

octupoles, with the spread larger than the growth rate.

A third method is to employ a damper. Let us derive the displacements of consecutive

bunches at a BPM. Suppose the first bunch is at the BPM with betatron phase φβ0 = 0;

its displacement registered at the BPM is proportional to cosφβ0 = 1. At that moment,

the next bunch has phase 2πµ̄/M in advance, where µ̄ = qM + µ = −20. When this

bunch arrives at the BPM, the time elapsed is T0/M and the change in betatron phase

is ωβT0/M = 2πνβ/M . The total betatron phase on arrival at the BPM is therefore

φβ1 = 2πµ̄/M+2πνβ/M = 2π(µ̄−νβ)/M = (−0.4)2π/M , and the displacement registered

is cosφβ1 When the nth consecutive bunch arrives at the BPM, its phase will be φβn =

n(−0.4)2π/M . This is illustrated in Fig. 10.3 when the BPM is registering every 20th

bunch [2]. What we see at the BPM is a wave of frequency −0.4 harmonic or about

19.1 kHz. Because we know that the bunches follow the pattern of such a slow wave, we
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Figure 10.3: Difference signal at a BPM displaying the displacement of every 20th
bunch, when the µ = 1093 mode of transverse coupled-bunch is excited by the
resistive wall impedance.

only require a very narrow-band feedback system to damp the instability. Usually the

adjacent modes µ = 1092, 1091, · · · will also be unstable at the −1.4ω0, −2.4ω0, · · ·
betatron line; but the growth rates will be smaller.

10.2 NARROW RESONANCES

The narrow higher-order transverse resonant modes of the rf cavities will also drive

transverse coupled-bunch instabilities. The growth rates are described by the general

growth formula of Eq. (10.1). When the resonance is narrow enough, only the betatron

lines closest to the resonant frequency ωr/(2π) contribute in the summation. The growth

rate is therefore given by Eq. (10.2), where two betatron lines are included.

1

τmµ
≈ − 1

1+m

eMIbc

4πνβE0
[ReZ⊥1 (ωq)F

′
m(ωqτL − χ)−ReZ⊥1 (ωq′)F

′
m(ωq′τL − χ)] , (10.4)
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where q and q′ satisfy {
−ωr ≈ ωq = (qM + µ + νβ +mνs)ω0

ωr ≈ ωq′ = (q′M + µ+ νβ +mνs)ω0 .
(10.5)

Similar to the situation of longitudinal coupled-bunch instabilities, mode µ = 0 and mode

µ = M/2 if M is even receive contributions from both the positive-frequency side and

negative-frequency side. In the language of only positive frequencies, there are the upper

and lower betatron side-bands flanking each revolution harmonic line. The lower side-band

originates from negative frequency and is therefore anti-damped. For these two modes,

both the upper and lower side-bands correspond to the same coupled-bunch mode. If the

resonant frequency of the resonance leans more towards the lower sideband, there will be

a growth. If the resonant frequency leans more towards the upper side band, there will be

damping. This is the Robinson’s stability analog in the transverse phase plane. However,

sometimes it is not so easy to identify which is the lower sideband and which is the upper

sideband. This is because the residual betatron tune [νβ] or the noninteger part of the

betatron tune can assume any value between 0 and 1. If [νβ] > 0.5, the upper betatron

sideband of a harmonic will have a higher frequency than the lower betatron sideband of

the next harmonic.

There is one important difference between transverse coupled-bunch instabilities

driven by the resistive-wall impedance and by the higher-order resonant modes. The

former is at very low frequency and therefore the form factor F1 is close to 1 when the

chromaticity is zero. The latter, however, is at the high frequency of the resonances. The

form factor usually assumes a much smaller value unless the bunch is very short and we

sometimes refer this to “damping” from the spread of the bunch.

This instability can be observed easily in the frequency domain at the lower betatron

sidebands flanking the harmonic lines. If a particular lower betatron sideband grows

strongly, we subtract the betatron tune νβ (not [νβ ]) to find out which harmonic line it

is associated with. Then from Eq. (10.5), we can determine which coupled-bunch mode

µ it is. To damp this transverse coupled-bunch instability, one can identify the offending

resonant modes in the cavities and damp them passively using an antenna. A tune spread

due to the slip factor η or from an octupole can also contribute to the damping. When

the above are not efficient enough, a transverse bunch-to-bunch damper will be required.

Unlike the situation of the resistive wall, here the damper must be of wide-band.
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10.3 EXERCISES

10.1. For the example of resistive-wall driven coupled-bunch instability of the Tevatron

at the fixed target mode, try to sum up the contribution for all frequencies for the

µ = 1093 mode and compare the result of taking only the lowest frequency line.

10.2. For the same example in Exercise 10.1, compare the growth rates of mode µ =

1092, 1091, · · · , with mode 1093. How many modes do we need to include so that

the growth rate drops to below 1/4 of that of mode 1093?

10.3. For a narrow resonance that has a total width larger than 2[νβ]ω0 where [νβ] is

the residual betatron tune and the bunch power spectrum is much wider than the

revolution frequency, show that the growth rate is given by

1

τmµ
≈ eMIbc

4πνβE0

hm(ωr−χ/τL)

B
∑

q′ hm(ωq′−χ/τL)
×

×
{
ReZ⊥1 [(q1M−µ−νβ)ω0−mωs]−ReZ⊥1 [(q2M+µ+νβ)ω0+mωs]

}
, (10.6)

where q1 and q2 are some positive integer so that

(q1M − µ− νβ)ω0 ≈ ωr ,

(q2M + µ+ νβ)ω0 ≈ ωr . (10.7)

Such q1 and q2 are possible only when µ = 0 or µ = M/2 if M is even. Therefore

whether the coupled-bunch mode is stable or unstable depends on whether the res-

onance is leaning more towards the upper betatron side-band or the lower betatron

side-band.
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